Combining Learning-to-Rank with Clustering
نویسندگان
چکیده
This paper aims to combine learning-to-rank methods with an existing clustering underlying the entities to be ranked. In recent years, learning-to-rank has attracted the interest of many researchers and a large number of algorithmic approaches and methods have been published. Existing learning-to-rank methods have as goal to automatically construct a ranking model from training data. Usually, all these methods don't take into consideration the data's structure. Although there is a novel task named “Relational Ranking” which tries to make allowances for the inter-relationship between documents, it has restrictions and it is difficult to be applied in a lot of real applications. To address this problem, we create a per query clustering using state of the art algorithms from our training data. Then, we experimentally verify the effect of
منابع مشابه
Word clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering
The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملDeveloping a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملAn approach to rank efficient DMUs in DEA based on combining Manhattan and infinity norms
In many applications, discrimination among decision making units (DMUs) is a problematic technical task procedure to decision makers in data envelopment analysis (DEA). The DEA models unable to discriminate between extremely efficient DMUs. Hence, there is a growing interest in improving discrimination power in DEA yet. The aim of this paper is ranking extreme efficient DMUs in DEA based on exp...
متن کامل